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In the final chapter of his famous book How to Lie with Statistics, Darrell Huff tells
us that “anything smacking of the medical profession” or published by scientific
laboratories and universities is worthy of our trust – not unconditional trust,
but certainly more trust than we’d afford the media or shifty politicians. After
all, Huff filled an entire book with the misleading statistical trickery used in
politics and the media, but few people complain about statistics done by trained
professional scientists. Scientists seek understanding, not ammunition to use
against political opponents.

Statistical data analysis is fundamental to science. Open a random page in your
favorite medical journal and you’ll be deluged with statistics: t tests, p values,
proportional hazards models, risk ratios, logistic regressions, least-squares fits,
and confidence intervals. Statisticians have provided scientists with tools of
enormous power to find order and meaning in the most complex of datasets,
and scientists have embraced them with glee.

They have not, however, embraced statistics education, and most undergraduate
programs in the sciences require no statistical training whatsoever.

Since the 1980s, researchers have described numerous statistical fallacies and
misconceptions in the popular peer-reviewed scientific literature, and have found
that many scientific papers – perhaps more than half – fall prey to these errors.
Inadequate statistical power renders many studies incapable of finding what
they’re looking for; multiple comparisons and misinterpreted p values cause
numerous false positives; flexible data analysis makes it easy to find a correlation
where none exists. The problem isn’t fraud but poor statistical education – poor
enough that some scientists conclude that most published research findings are
probably false.1

What follows is a list of the more egregious statistical fallacies regularly commit-
ted in the name of science. It assumes no knowledge of statistical methods, since
many scientists receive no formal statistical training. And be warned: once you
learn the fallacies, you will see them everywhere. Don’t be alarmed. This isn’t an

1Ioannidis, J. P. A. (2005). Why Most Published Research Findings Are False. PLoS Medicine,
2(8), e124. doi:10.1371/journal.pmed.0020124
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excuse to reject all modern science and return to bloodletting and leeches – it’s a
call to improve the science we rely on.

Updated January 2013 with a relevant example of the base-rate fallacy: survey estimates
of gun usage.
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An introduction to data analysis

Much of experimental science comes down to measuring changes. Does one
medicine work better than another? Do cells with one version of a gene syn-
thesize more of an enzyme than cells with another version? Does one kind of
signal processing algorithm detect pulsars better than another? Is one catalyst
more effective at speeding a chemical reaction than another?

Much of statistics, then, comes down to making judgments about these kinds of
differences. We talk about “statistically significant differences” because statisti-
cians have devised ways of telling if the difference between two measurements
is really big enough to ascribe to anything but chance.

Suppose you’re testing cold medicines. Your new medicine promises to cut the
duration of cold symptoms by a day. To prove this, you find twenty patients
with colds and give half of them your new medicine and half a placebo. Then
you track the length of their colds and find out what the average cold length
was with and without the medicine.

But all colds aren’t identical. Perhaps the average cold lasts a week, but some
last only a few days, and others drag on for two weeks or more, straining the
household Kleenex supply. It’s possible that the group of ten patients receiving
genuine medicine will be the unlucky types to get two-week colds, and so you’ll
falsely conclude that the medicine makes things worse. How can you tell if
you’ve proven your medicine works, rather than just proving that some patients
are unlucky?

The power of p values

Statistics provides the answer. If we know the distribution of typical cold cases –
roughly how many patients tend to have short colds, or long colds, or average
colds – we can tell how likely it is for a random sample of cold patients to have
cold lengths all shorter than average, or longer than average, or exactly average.
By performing a statistical test, we can answer the question “If my medication
were completely ineffective, what are the chances I’d see data like what I saw?”

That’s a bit tricky, so read it again.

Intuitively, we can see how this might work. If I only test the medication on one
person, it’s unsurprising if he has a shorter cold than average – about half of
patients have colds shorter than average. If I test the medication on ten million
patients, it’s pretty damn unlikely that all of them will have shorter colds than
average, unless my medication works.

The common statistical tests used by scientists produce a number called the p
value that quantifies this. Here’s how it’s defined:
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The P value is defined as the probability, under the assumption of
no effect or no difference (the null hypothesis), of obtaining a result
equal to or more extreme than what was actually observed.2

So if I give my medication to 100 patients and find that their colds are a day
shorter on average, the p value of this result is the chance that, if my medication
didn’t do anything at all, my 100 patients would randomly have colds shorter
by a day or more. Obviously, the p value depends on the size of the effect –
colds shorter by four days are less likely than colds shorter by one day – and the
number of patients I test the medication on.

That’s a tricky concept to wrap your head around. A p value is not a measure
of how right you are, or how significant the difference is; it’s a measure of how
surprised you should be if there is no actual difference between the groups, but
you got data suggesting there is. A bigger difference, or one backed up by more
data, suggests more surprise and a smaller p value.

It’s not easy to translate that into an answer to the question “is there really a
difference?” Most scientists use a simple rule of thumb: if p is less than 0.05,
there’s only a 5% chance of obtaining this data (or more extreme data) unless
the medication really works, so we will call the difference between medication
and placebo “significant.” If p is larger, we’ll call the difference insignificant.

There are limitations. The p value is a measure of surprise, not a measure of the
size of the effect. I can get a tiny p value by either measuring a huge effect – “this
medicine makes people live four times longer” – or by measuring a tiny effect
with great certainty. Statistical significance does not mean your result has any
practical significance.

Similarly, statistical insignificance is hard to interpret. I could have a perfectly
good medicine, but if I test it on ten people, I’d be hard-pressed to tell the
difference between a real improvement in the patients and plain good luck.
Alternately, I might test it on thousands of people, but the medication only
shortens colds by three minutes, and so I’m simply incapable of detecting the
difference. A statistically insignificant difference does not mean there is no
difference at all.

There’s no mathematical tool to tell you if your hypothesis is true; you can only
see whether it is consistent with the data, and if the data is sparse or unclear,
your conclusions are uncertain.

But we can’t let that stop us.
2Goodman, S. N. (1999). Toward evidence-based medical statistics. 1: The P value fallacy. Annals

of internal medicine, 130(12), 995–1004.
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Statistical power and underpowered statistics

We’ve seen that it’s possible to miss a real effect simply by not taking enough
data. In most cases, this is a problem: we might miss a viable medicine or fail to
notice an important side-effect. How do we know how much data to collect?

Statisticians provide the answer in the form of “statistical power.” The power of
a study is the likelihood that it will distinguish an effect of a certain size from
pure luck. A study might easily detect a huge benefit from a medication, but
detecting a subtle difference is much less likely. Let’s try a simple example.

Suppose a gambler is convinced that an opponent has an unfair coin: rather than
getting heads half the time and tails half the time, the proportion is different,
and the opponent is using this to cheat at incredibly boring coin-flipping games.
How to prove it?

You can’t just flip the coin a hundred times and count the heads. Even with a
perfectly fair coin, you don’t always get fifty heads:
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Figure 1: This shows the likelihood of getting different numbers of heads, if you
flip a coin a hundred times.

You can see that 50 heads is the most likely option, but it’s also reasonably likely
to get 45 or 57. So if you get 57 heads, the coin might be rigged, but you might
just be lucky.

Let’s work out themath. Let’s saywe look for a p value of 0.05 or less, as scientists
typically do. That is, if I count up the number of heads after 10 or 100 trials
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and find a deviation from what I’d expect – half heads, half tails – I call the coin
unfair if there’s only a 5% chance of getting a deviation that size or larger with a
fair coin. Otherwise, I can conclude nothing: the coin may be fair, or it may be
only a little unfair. I can’t tell.

So, what happens if I flip a coin ten times and apply these criteria?
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This is called a power curve. Along the horizontal axis, we have the different
possibilities for the coin’s true probability of getting heads, corresponding to
different levels of unfairness. On the vertical axis is the probability that I will
conclude the coin is rigged after ten tosses, based on the p value of the result.

You can see that if the coin is rigged to give heads 60% of the time, and I flip the
coin 10 times, I only have a 20% chance of concluding that it’s rigged. There’s
just too little data to separate rigging from random variation. The coin would
have to be incredibly biased for me to always notice.

But what if I flip the coin 100 times?

Or 1,000 times? The plots on the next page show the result.

With one thousand flips, I can easily tell if the coin is rigged to give heads 60%
of the time. It’s just overwhelmingly unlikely that I could flip a fair coin 1,000
times and get more than 600 heads.

The power of being underpowered

After hearing all this, you might think calculations of statistical power are es-
sential to medical trials. A scientist might want to know how many patients are
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Figure 2: Power after 100 flips.
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Figure 3: Power after 1,000 flips.
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needed to test if a new medication improves survival by more than 10%, and a
quick calculation of statistical power would provide the answer. Scientists are
usually satisfied when the statistical power is 0.8 or higher, corresponding to an
80% chance of concluding there’s a real effect.

However, few scientists ever perform this calculation, and few journal articles
ever mention the statistical power of their tests.

Consider a trial testing two different treatments for the same condition. You
might want to know which medicine is safer, but unfortunately, side effects are
rare. You can test each medicine on a hundred patients, but only a few in each
group suffer serious side effects.

Obviously, you won’t have terribly much data to compare side effect rates. If
four people have serious side effects in one group, and three in the other, you
can’t tell if that’s the medication’s fault.

Unfortunately, many trials conclude with “There was no statistically significant
difference in adverse effects between groups” without noting that there was
insufficient data to detect any but the largest differences.3 And so doctors
erroneously think the medications are equally safe, when one could well be
much more dangerous than the other.

You might think this is only a problem when the medication only has a weak
effect. But no: in one sample, 64% of randomized controlled medical trials didn’t
collect enough data to detect a 50% difference between treatment groups. Fifty
percent! Even if one medication decreases symptoms by 50% more than the
other medication, there’s insufficient data to conclude it’s more effective. And
84% of trials didn’t have the power to detect a 25% difference.4

That’s not to say scientists are lying when they state they detected no significant
difference between groups. You’re just misleading yourself when you assume
this means there is no real difference. There may be a difference, but the study
was too small to notice it.

3Tsang, R., Colley, L., & Lynd, L. D. (2009). Inadequate statistical power to detect clinically
significant differences in adverse event rates in randomized controlled trials. Journal of clinical
epidemiology, 62(6), 609–616. doi:10.1016/j.jclinepi.2008.08.005

4DMoher, C S Dulberg, andGAWells. (1994). Statistical Power, Sample Size, and Their Reporting
in Randomized Controlled Trials. Journal of the American Medical Association, 272(2), 122–124.
doi:10.1001/jama.1994.03520020048013
Bedard, P. L., Krzyzanowska, M. K., Pintilie, M., & Tannock, I. F. (2007). Statistical Power of

Negative Randomized Controlled Trials Presented at American Society for Clinical OncologyAnnual
Meetings. Journal of Clinical Oncology, 25(23), 3482–3487. doi:10.1200/JCO.2007.11.3670
Brown, C. G., Kelen, G. D., Ashton, J. J., & Werman, H. A. (1987). The beta error and sample

size determination in clinical trials in emergency medicine. Annals of emergency medicine, 16(2),
183–187.

Chung, K. C., Kalliainen, L. K., & Hayward, R. A. (1998). Type II (beta) errors in the hand
literature: the importance of power. The Journal of hand surgery, 23(1), 20–25. doi:10.1016/S0363-
5023(98)80083-X
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Pseudoreplication: choose your data wisely

Many studies strive to collect more data through replication: by repeating their
measurements they can be more certain of their numbers, and can discover
subtle relationships that aren’t obvious at first glance. We’ve seen the value of
additional data for improving statistical power and detecting small differences.
But what exactly counts as a replication?

Let’s return to a medical example. I have two groups of 100 patients taking
different medications, and I seek to establish which medication lowers blood
pressure more. I have each group take the medication for a month to allow it
to take effect, and then I follow each group for ten days, each day testing their
blood pressure. I now have ten data points per patient and 1,000 data points per
group.

Brilliant! 1,000 data points is quite a lot, and I can fairly easily establish whether
one group has lower blood pressure than the other. When I do calculations for
statistical significance I find significant results very easily.

But wait: we expect that taking a patient’s blood pressure ten times will yield
ten very similar results. If one patient is genetically predisposed to low blood
pressure, I have counted his genetics ten times. Had I collected data from
1,000 independent patients instead of repeatedly testing 100, I would be more
confident that differences between groups came from the medicines and not
from genetics and luck. I claimed a large sample size, giving me statistically
significant results and high statistical power, but my claim is unjustified.

This problem is known as pseudoreplication, and it is quite common.5 After
testing cells from a culture, a biologist might “replicate” his results by testing
more cells from the same culture. Neuroscientists will test multiple neurons
from the same animal, incorrectly claiming they have a large sample size because
they tested hundreds of neurons from just two rats.

Pseudoreplication makes it easy to achieve significance, even though it gives you
little additional information on the test subjects. Researchers must be careful
not to artificially inflate their sample sizes when they retest samples.

The p value and the base rate fallacy

You’ve already seen that p values are hard to interpret. Getting a statistically
insignificant result doesn’t mean there’s no difference. What about getting a
significant result?

Let’s try an example. Suppose I am testing a hundred potential cancer medica-
tions. Only ten of these drugs actually work, but I don’t know which; I must

5Lazic, S. E. (2010). The problem of pseudoreplication in neuroscientific studies: is it affecting
your analysis? BMC Neuroscience, 11, 5. doi:10.1186/1471-2202-11-5
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perform experiments to find them. In these experiments, I’ll look for p < 0.05
gains over a placebo, demonstrating that the drug has a significant benefit.

To illustrate, each square in this grid represents one drug. The blue squares are
the drugs that work:

Aswe saw, most trials can’t perfectly detect every goodmedication. We’ll assume
my tests have a statistical power of 0.8. Of the ten good drugs, I will correctly
detect around eight of them, shown in purple:

Of the ninety ineffectual drugs, I will conclude that about 5 have significant
effects. Why? Remember that p values are calculated under the assumption of
no effect, so p = 0.05 means a 5% chance of falsely concluding that an ineffectual
drug works.

So I perform my experiments and conclude there are 13 working drugs: 8 good
drugs and 5 I’ve included erroneously, shown in red:

The chance of any given “working” drug being truly effectual is only 62%. If I
were to randomly select a drug out of the lot of 100, run it through my tests, and
discover a p < 0.05 statistically significant benefit, there is only a 62% chance
that the drug is actually effective.
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Because the base rate of effective cancer drugs is so low – only 10% of our hundred
trial drugs actually work – most of the tested drugs do not work, and we have
many opportunities for false positives. If I had the bad fortune of possessing a
truckload of completely ineffective medicines, giving a base rate of 0%, there is
a 0% chance that any statistically significant result is true. Nevertheless, I will
get a p < 0.05 result for 5% of the drugs in the truck.

You often hear people quoting p values as a sign that error is unlikely. “There’s
only a 1 in 10,000 chance this result arose as a statistical fluke,” they say, because
they got p = 0.0001. No! This ignores the base rate, and is called the base rate
fallacy. Remember how p values are defined:

The P value is defined as the probability, under the assumption of
no effect or no difference (the null hypothesis), of obtaining a result
equal to or more extreme than what was actually observed.

A p value is calculated under the assumption that the medication does not work
and tells us the probability of obtaining the data we did, or data more extreme
than it. It does not tell us the chance the medication is effective.

When someone uses their p values to say they’re probably right, remember this.
Their study’s probability of error is almost certainlymuch higher. In fields where
most tested hypotheses are false, like early drug trials (most early drugs don’t
make it through trials), it’s likely that most “statistically significant” results with
p < 0.05 are actually flukes.

One good example is medical diagnostic tests.

The base rate fallacy in medical testing

There has been some controversy over the use of mammograms in screening
breast cancer. Some argue that the dangers of false positive results, such as
unnecessary biopsies, surgery and chemotherapy, outweigh the benefits of early
cancer detection. This is a statistical question. Let’s evaluate it.

Suppose 0.8% of women who get mammograms have breast cancer. In 90% of
women with breast cancer, the mammogram will correctly detect it. (That’s
the statistical power of the test. This is an estimate, since it’s hard to tell how
many cancers are missed if we don’t know they’re there.) However, among
women with no breast cancer at all, about 7% will get a positive reading on
the mammogram, leading to further tests and biopsies and so on. If you get a
positive mammogram result, what are the chances you have breast cancer?

Ignoring the chance that you, the reader, are male,6 the answer is 9%.7

6Interestingly, being male doesn’t exclude you from getting breast cancer; it just makes it exceed-
ingly unlikely.

7Krämer, W., & Gigerenzer, G. (2005). How to Confuse with Statistics or: The Use and Misuse of
Conditional Probabilities. Statistical Science, 20(3), 223–230. doi:10.1214/088342305000000296
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Despite the test only giving false positives for 7% of cancer-free women, analo-
gous to testing for p < 0.07, 91% of positive tests are false positives.

How did I calculate this? It’s the same method as the cancer drug example.
Imagine 1,000 randomly selected women who choose to get mammograms.
Eight of them have breast cancer. The mammogram correctly detects 90% of
breast cancer cases, so about seven of the eight women will have their cancer
discovered. However, there are 992womenwithout breast cancer, and 7%will get
a false positive reading on their mammograms, giving us 70 women incorrectly
told they have cancer.

In total, we have 77 women with positive mammograms, 7 of whom actually
have breast cancer. Only 9% of women with positive mammograms have breast
cancer.

If you administer questions like this one to statistics students and scientific
methodology instructors, more than a third fail.8 If you ask doctors, two thirds
fail.9 They erroneously conclude that a p = 0.05 result implies a 95% chance
that the result is true – but as you can see in these examples, the likelihood of a
positive result being true depends on what proportion of hypotheses tested are true.
And we are very fortunate that only a small proportion of women have breast
cancer at any given time.

Examine introductory statistical textbooks and you will often find the same
error. P values are counterintuitive, and the base rate fallacy is everywhere.

Taking up arms against the base rate fallacy

You don’t have to be performing advanced cancer research or early cancer screen-
ings to run into the base rate fallacy. What if you’re doing social research? You’d
like to survey Americans to find out how often they use guns in self-defense.
Gun control arguments, after all, center on the right to self-defense, so it’s im-
portant to determine whether guns are commonly used for defense and whether
that use outweighs the downsides, such as homicides.

One way to gather this data would be through a survey. You could ask a rep-
resentative sample of Americans whether they own guns and, if so, whether
they’ve used the guns to defend their homes in burglaries or defend themselves
from being mugged. You could compare these numbers to law enforcement
statistics of gun use in homicides and make an informed decision about whether
the benefits outweigh the downsides.

Such surveys have been done, with interesting results. One 1992 telephone
survey estimated that American civilians use guns in self-defense up to 2.5

8Krämer, W., & Gigerenzer, G. (2005). How to Confuse with Statistics or: The Use and Misuse of
Conditional Probabilities. Statistical Science, 20(3), 223–230. doi:10.1214/088342305000000296

9Bramwell, R., &West, H. (2006). Health professionals’ and service users’ interpretation of screen-
ing test results: experimental study. British Medical Journal. doi:10.1136/bmj.38884.663102.AE

12

http://dx.doi.org/10.1214/088342305000000296
http://dx.doi.org/10.1136/bmj.38884.663102.AE


million times every year – that is, about 1% of American adults have defended
themselves with firearms. Now, 34% of these cases were in burglaries, giving
us 845,000 burglaries stymied by gun owners. But in 1992, there were only 1.3
million burglaries committed while someone was at home. Two thirds of these
occurred while the homeowners were asleep and were discovered only after
the burglar had been left. That leaves 430,000 burglaries involving homeowners
who could confront the burglar – 845,000 of which, we are led to believe, were
stymied by gun-toting residents.10

Whoops.

What happened? Why did the survey overestimate the use of guns in self-
defense? Well, for the same reason that mammograms overestimate the inci-
dence of breast cancer: there are far more opportunities for false positives than
false negatives. If 99.9% of people have never used a gun in self-defense, but
1% of those people will answer “yes” to any question for fun, and 1% want to
look manlier, and 1% misunderstand the question, then you’ll end up vastly
overestimating the use of guns in self-defense.

What about false negatives? Could this effect be balanced by people who say
“no” even though they gunned down amugger last week? No. If very few people
genuinely use a gun in self-defense, then there are very few opportunities for
false negatives. They’re overwhelmed by the false positives.

This is exactly analogous to the cancer drug example earlier. Here, p is the
probability that someone will falsely claim they’ve used a gun in self-defense.
Even if p is small, your final answer will be wildly wrong.

To lower p, criminologists make use of more detailed surveys. The National
Crime Victimization surveys, for instance, use detailed sit-down interviews with
researchers where respondents are asked for details about crimes and their use
of guns in self-defense. With far greater detail in the survey, researchers can
better judgewhether the incident meets their criteria for self-defense. The results
are far smaller – something like 65,000 incidents per year, not millions. There’s a
chance that survey respondents underreport such incidents, but a much smaller
chance of massive overestimation.

If at first you don’t succeed, try, try again

The base rate fallacy shows us that false positives are much more likely than
you’d expect from a p < 0.05 criterion for significance. Most modern research
doesn’t make one significance test, however; modern studies compare the effects
of a variety of factors, seeking to find those with the most significant effects.

For example, imagine testing whether jelly beans cause acne by testing the effect
of every single jelly bean color on acne:

10Hemenway, D. (1997). Survey Research and Self-Defense Gun Use: An Explanation of Extreme
Overestimates. The Journal of Criminal Law and Criminology, 87(4), 1430-1445.
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Figure 4: Cartoon fromxkcd, byRandallMunroe. http://xkcd.com/882/ (copy-
right info)
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As you can see, making multiple comparisons means multiple chances for a
false positive. For example, if I test 20 jelly bean flavors which do not cause acne
at all, and look for a correlation at p < 0.05 significance, I have a 64% chance of
a false positive result.11 If I test 45 materials, the chance of false positive is as
high as 90%.

It’s easy to make multiple comparisons, and it doesn’t have to be as obvious as
testing twenty potential medicines. Track the symptoms of a dozen patients for
a dozen weeks and test for significant benefits during any of those weeks: bam,
that’s twelve comparisons. Check for the occurrence of twenty-three potential
dangerous side effects: alas, you have sinned. Send out a ten-page survey asking
about nuclear power plant proximity, milk consumption, age, number of male
cousins, favorite pizza topping, current sock color, and a few dozen other factors
for good measure, and you’ll find that something causes cancer. Ask enough
questions and it’s inevitable.

A survey of medical trials in the 1980s found that the average trial made 30
therapeutic comparisons. In more than half of the trials, the researchers had
made so many comparisons that a false positive was highly likely, and the
statistically significant results they did report were cast into doubt: they may
have found a statistically significant effect, but it could just have easily been a
false positive.

There exist techniques to correct for multiple comparisons. For example, the
Bonferroni correction method says that if you make n comparisons in the trial,
your criterion for significance should be p < 0.05/n. This lowers the chances
of a false positive to what you’d see from making only one comparison at p <
0.05.12 However, as you can imagine, this reduces statistical power, since you’re
demanding much stronger correlations before you conclude they’re statistically
significant. It’s a difficult tradeoff, and tragically few papers even consider it.

Red herrings in brain imaging

Neuroscientists do massive numbers of comparisons regularly. They often
perform fMRI studies, where an image of the brain is taken before and after the
subject performs some task. The images show blood flow in the brain, revealing
which parts of the brain are most active when a person performs different tasks.

But how do you decide which regions of the brain are active during the task?
A simple method is to divide the brain image into small cubes called voxels.
A voxel in the “before” image is compared to the voxel in the “after” image,
and if the difference in blood flow is significant, you conclude that part of the
brain was involved in the task. (Of course, most studies are more sophisticated

11Smith, D. G., Clemens, J., Crede, W., Harvey, M., & Gracely, E. J. (1987). Impact of multiple
comparisons in randomized clinical trials. The American Journal of Medicine, 83(3), 545–550.

12Weisstein, Eric W. “Bonferroni Correction.” From MathWorld–A Wolfram Web Resource. http:
//mathworld.wolfram.com/BonferroniCorrection.html
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than this; there are methods of looking for clusters of voxels which all change
together, among other techniques.)

Trouble is, there are thousands of voxels to compare and many opportunities
for false positives. Neuroscientists set their threshold for significance low, at
p < 0.001, but that may not be enough.

One study, for instance, tested the effects of an “open-ended mentalizing task”
on participants. Subjects were shown “a series of photographs depicting human
individuals in social situations with a specified emotional valence,” and asked
to “determine what emotion the individual in the photo must have been expe-
riencing.” You can imagine how various emotional and logical centers of the
brain would light up during this test.

The data was analyzed, and certain brain regions found to change activity during
the task. Comparison of images made before and after the mentalizing task
showed a p = 0.001 difference in a 81mm3 cluster in the brain.

The study participants? Not college undergraduates paid $10 for their time, as
is usual. No, the test subject was one 3.8-pound Atlantic salmon, which “was
not alive at the time of scanning.”13

When differences in significance aren’t significant
differences

“We compared treatments A and B with a placebo. Treatment A showed a
significant benefit over placebo, while treatment B had no statistically significant
benefit. Therefore, treatment A is better than treatment B.”

We hear this all the time. It’s an easy way of comparing medications, surgical
interventions, therapies, and experimental results. It’s straightforward. It seems
to make sense.

However, a difference in significance does not always make a significant differ-
ence.14

Imagine a study comparing walrus diets. One group of walruses is fed their
ordinary diet, while two other groups are fed new, more nutritious diets. The
researchers weigh the walruses after a month and find that nutritious diet A
caused the walruses to gain about 25 kilograms more than the ordinary diet,
while nutritious diet B caused the walruses to only gain about 10 kg more.

13Bennett, C., Baird, A., Miller, M., &Wolford, G. (2010). Neural Correlates of Interspecies Perspec-
tive Taking in the Post-Mortem Atlantic Salmon: An Argument For Proper Multiple Comparisons
Correction. Journal of Serendipitous and Unexpected Results, 1(1), 1–5.

14Gelman, A., & Stern, H. (2006). The Difference Between “Significant” and “Not Sig-
nificant” is not Itself Statistically Significant. The American Statistician, 60(4), 328–331.
doi:10.1198/000313006X152649
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We want to establish how much weight gain we can expect on average from
each diet. If we fed these diets to all the walruses in the universe, what would
the average weight gain be? Now, we don’t have many walruses, so it’s hard
to answer that – individual walruses vary quite a bit, and can gain weight for
reasons other than a new diet. (Perhaps the male walruses are bulking up for
swimsuit season.) Accounting for this variation, we calculate that diet B’s effect
is statistically insignificant: there’s too much variation between walruses to
conclude that the 10 kg weight gain was caused by the diet. Diet A, however,
causes a statistically significant weight gain, and was probably effective.

A researchermight conclude “diet A caused a statistically significant weight gain,
while diet B did not; clearly diet A is more fattening than diet B.” Other walrus
keepers might read the paper and decide to feed diet A to their underweight
and sick walruses, since it’s more effective.

But is it? Not necessarily.

Because we have limited data, there’s some inherent error in our numbers. We
can calculate what results would also be consistent with the data; for example,
the “true” effect of diet A might be 35 kg or 17 kg of weight gain, and it’s
plausible that with our small sample of walruses we’d still see the results we did.
Collecting more data would help us pin down the true effects more precisely.

Statistics supplies tools for quantifying this error. If we calculate the uncertainties
of each of our measurements, we might find it plausible that both diets have
exactly the same effect. Diet B has a statistically insignificant effect because
it’s entirely plausible that it causes a weight gain of 0 kilograms – but it’s also
plausible that it causes a gain of 20 kg and we got some unusually skinny
walruses in our sample. Similarly, it’s entirely plausible that diet A also causes
a gain of 20 kg and we got some unusually gluttonous walruses in our study.
Without more data we cannot be sure.

Our data is insufficient to conclude there is a statistically significant difference
between diets A and B. While one diet produces statistically significant results
and the other doesn’t, there’s not a statistically significant difference between the
two. They might both be equally effective. Be careful comparing the significance
of two results. If you want to compare two treatments or effects, compare them
directly.

Examples of this error in common literature and news stories abound. A huge
proportion of papers in neuroscience, for instance, commit the error.15 You
might also remember a study a few years ago suggesting that men with more
biological older brothers are more likely to be homosexual.16 How did they
reach this conclusion? And why older brothers and not older sisters?

15Nieuwenhuis, S., Forstmann, B. U., & Wagenmakers, E.-J. (2011). Erroneous analyses of in-
teractions in neuroscience: a problem of significance. Nature Neuroscience, 14(9), 1105–1109.
doi:10.1038/nn.2886

16Bogaert, A. F. (2006), “Biological Versus Nonbiological Older Brothers and Men’s Sex-
ual Orientation,” in Proceedings of the National Academy of Sciences, 103, pp. 10771–10774.
doi:10.1073/pnas.0511152103
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The authors explain their conclusion by noting that they ran an analysis of
various factors and their effect on homosexuality. Only the number of older
brothers had a statistically significant effect; number of older sisters, or number
of nonbiological older brothers, had no statistically significant effect.

But as we’ve seen, that doesn’t guarantee that there’s a significant difference
between the effects of older brothers and older sisters. In fact, taking a closer
look at the data, it appears there’s no statistically significant difference between
the effect of older brothers and older sisters. Unfortunately, not enough data
was published in the paper to allow a direct calculation.17

Stopping rules and regression to the mean

Medical trials are expensive. Supplying dozens of patients with experimental
medications and tracking their symptoms over the course of months takes sig-
nificant resources, and so many pharmaceutical companies develop “stopping
rules,” which allow investigators to end a study early if it’s clear the experimental
drug has a substantial effect. For example, if the trial is only half complete but
there’s already a statistically significant difference in symptoms with the new
medication, the researchers may terminate the study, rather than gathering more
data to reinforce the conclusion.

When poorly done, however, this can lead to numerous false positives.

For example, suppose we’re comparing two groups of patients, one with a
medication and one with a placebo. We measure the level of some protein in
their bloodstreams as a way of seeing if the medication is working. In this case,
though, themedication causes no difference whatsoever: patients in both groups
have the same average protein levels, although of course individuals have levels
which vary slightly.

We start with ten patients in each group, and gradually collect more data from
more patients. As we go along, we do a t test to compare the two groups and
see if there is a statistically significant difference between average protein levels.
We might see a result like the simulation shown.

The plot shows the p value of the difference between groups as we collect more
data, with the horizontal line indicating the p = 0.05 level of significance. At
first, there appears to be no significant difference. Then we collect more data
and conclude there is. If we were to stop, we’d be misled: we’d believe there is
a significant difference between groups when there is none. As we collect yet
more data, we realize we were mistaken – but then a bit of luck leads us back to
a false positive.

17Gelman, A., & Stern, H. (2006). The Difference Between “Significant” and “Not Sig-
nificant” is not Itself Statistically Significant. The American Statistician, 60(4), 328–331.
doi:10.1198/000313006X152649
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You’d expect that the p value dip shouldn’t happen, since there’s no real differ-
ence between groups. After all, takingmore data shouldn’tmake our conclusions
worse, right? And it’s true that if we run the trial again we might find that the
groups start out with no significant difference and stay that way as we collect
more data, or start with a huge difference and quickly regress to having none.
But if we wait long enough and test after every data point, we will eventually
cross any arbitrary line of statistical significance, even if there’s no real difference
at all. We can’t usually collect infinite samples, so in practice this doesn’t always
happen, but poorly implemented stopping rules still increase false positive rates
significantly.18

Modern clinical trials are often required to register their statistical protocols in
advance, and generally pre-select only a few evaluation points at which they
test their evidence, rather than testing after every observation. This causes only
a small increase in the false positive rate, which can be adjusted for by carefully
choosing the required significance levels and using more advanced statistical
techniques.19 But in fields where protocols are not registered and researchers
have the freedom to use whatever methods they feel appropriate, there may be
false positive demons lurking.

18Simmons, J. P., Nelson, L. D., & Simonsohn, U. (2011). False-Positive Psychology: Undisclosed
Flexibility in Data Collection and Analysis Allows Presenting Anything as Significant. Psychological
Science, 22(11), 1359–1366. doi:10.1177/0956797611417632

19Todd, S., Whitehead, A., Stallard, N., & Whitehead, J. (2001). Interim analyses and sequential de-
signs in phase III studies. British journal of clinical pharmacology, 51(5), 394–399. doi:10.1046/j.1365-
2125.2001.01382.x

19
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Truth inflation

Medical trials also tend to have inadequate statistical power to detect moderate
differences between medications. So they want to stop as soon as they detect an
effect, but they don’t have the power to detect effects.

Suppose a medication reduces symptoms by 20% over a placebo, but the trial
you’re using to test it does not have adequate statistical power to detect this
difference. We know that small trials tend to have varying results: it’s easy to
get ten lucky patients who have shorter colds than usual, but much harder to
get ten thousand who all do.

Now imagine running many copies of this trial. Sometimes you get unlucky
patients, and so you don’t notice any statistically significant improvement from
your drug. Sometimes your patients are exactly average, and the treatment
group has their symptoms reduced by 20% – but you don’t have enough data
to call this a statistically significant increase, so you ignore it. Sometimes the
patients are lucky and have their symptoms reduced by much more than 20%,
and so you stop the trial and say “Look! It works!”

You’ve correctly concluded that your medication is effective, but you’ve inflated
the size of its effect. You falsely believe it is much more effective than it really is.

This effect occurs in pharmacological trials, epidemiological studies, gene associ-
ation studies (“gene A causes condition B”), psychological studies, and in some
of the most-cited papers in the medical literature.20 In fields where trials can be
conducted quickly by many independent researchers (such as gene association
studies), the earliest published results are often wildly contradictory, because
small trials and a demand for statistical significance cause only the most extreme
results to be published.21

Little extremes

Suppose you’re in charge of public school reform. As part of your research into
the best teaching methods, you look at the effect of school size on standardized
test scores. Do smaller schools perform better than larger schools? Should you
try to build many small schools or a few large schools?

To answer this question, you compile a list of the highest-performing schools
you have. The average school has about 1,000 students, but the top-scoring five
or ten schools are almost all smaller than that. It seems that small schools do

20Ioannidis, J. P. A. (2008). Why Most Discovered True Associations Are Inflated. Epidemiology,
19(5), 640–648. doi:10.1097/EDE.0b013e31818131e7

Ioannidis, J. P. A. (2005). Contradicted and initially stronger effects in highly cited clinical research.
JAMA, 294(2), 218–228. doi:10.1001/jama.294.2.218

21Ioannidis, J. P. A., & Trikalinos, T. A. (2005). Early extreme contradictory estimates may appear
in published research: the Proteus phenomenon in molecular genetics research and randomized
trials. Journal of clinical epidemiology, 58(6), 543–549. doi:10.1016/j.jclinepi.2004.10.019
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the best, perhaps because of their personal atmosphere where teachers can get
to know students and help them individually.

Then you take a look at the worst-performing schools, expecting them to be large
urban schools with thousands of students and overworked teachers. Surprise!
They’re all small schools too.

What’s going on? Well, take a look at a plot of test scores vs. school size:
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Smaller schools have more widely varying average test scores, entirely because
they have fewer students. With fewer students, there are fewer data points to
establish the “true” performance of the teachers, and so the average scores vary
widely. As schools get larger, test scores vary less, and in fact increase on average.

This example used simulated data, but it’s based on real (and surprising) obser-
vations of Pennsylvania public schools.22

Another example: In the United States, counties with the lowest rates of kidney
cancer tend to be Midwestern, Southern and Western rural counties. How could
this be? You can think of many explanations: rural people get more exercise,
inhale less polluted air, and perhaps lead less stressful lives. Perhaps these
factors lower their cancer rates.

On the other hand, counties with the highest rates of kidney cancer tend to be
Midwestern, Southern and Western rural counties.

The problem, of course, is that rural counties have the smallest populations. A
single kidney cancer patient in a county with ten residents gives that county the

22Wainer, H. (2007). The Most Dangerous Equation. American Scientist, 95(2), 49.
doi:10.1511/2007.65.1026
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highest kidney cancer rate in the nation. Small counties hence have vastly more
variable kidney cancer rates, simply because they have so few residents.23

Researcher freedom: good vibrations?

There’s a common misconception that statistics is boring and monotonous. Col-
lect lots of data, plug the numbers into Excel or SPSS or R, and beat the software
with a stick until it produces some colorful charts and graphs. Done! All the
statistician must do is read off the results.

But one must choose which commands to use. Two researchers attempting to
answer the same question may perform different statistical analyses entirely.
There are many decisions to make:

1. Which variables do I adjust for? In a medical trial, for instance, you might
control for patient age, gender, weight, BMI, previous medical history,
smoking, drug use, or for the results of medical tests done before the
start of the study. Which of these factors are important, and which can be
ignored?

2. Which cases do I exclude? If I’m testing diet plans, maybe I want to exclude
test subjects who came down with uncontrollable diarrhea during the trial,
since their results will be abnormal.

3. What do I do with outliers? There will always be some results which are
out of the ordinary, for reasons known or unknown, and I may want to
exclude them or analyze them specially. Which cases count as outliers,
and what do I do with them?

4. How do I define groups? For example, I may want to split patients into
“overweight”, “normal”, and “underweight” groups. Where do I draw the
lines? What do I do with a muscular bodybuilder whose BMI is in the
“overweight” range?

5. What about missing data? Perhaps I’m testing cancer remission rates with
a newdrug. I run the trial for five years, but some patients will have tumors
reappear after six years, or eight years. My data does not include their
recurrence. How do I account for this when measuring the effectiveness
of the drug?

6. How much data should I collect? Should I stop when I have a definitive
result, or continue as planned until I’ve collected all the data?

23Gelman, A., & Price, P. N. (1999). All maps of parameter estimates are misleading. Statistics in
medicine, 18(23), 3221–3234.
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7. How do I measure my outcomes? A medication could be evaluated with
subjective patient surveys, medical test results, prevalence of a certain
symptom, or measures such as duration of illness.

Producing results can take hours of exploration and analysis to see which pro-
cedures are most appropriate. Papers usually explain the statistical analysis
performed, but don’t always explain why the researchers chose one method
over another, or explain what the results would be had the researchers chosen a
different method. Researchers are free to choose whatever methods they feel
appropriate – and while they may make the right choices, what would happen
if they analyzed the data differently?

In simulations, it’s possible to get effect sizes different by a factor of two simply by
adjusting for different variables, excluding different sets of cases, and handling
outliers differently.24 The effect size is that all-important number which tells
you how much of a difference your medication makes. So apparently, being free
to analyze how you want gives you enormous control over your results!

The most concerning consequence of this statistical freedom is that researchers
may choose the statistical analysis most favorable to them, arbitrarily producing
statistically significant results by playing with the data until something emerges.
Simulation suggests that false positive rates can jump to over 50% for a given
dataset just by letting researchers try different statistical analyses until one
works.25

Medical researchers have devised ways of preventing this. Researchers are
often required to draft a clinical trial protocol, explaining how the data will be
collected and analyzed. Since the protocol is drafted before the researchers see
any data, they can’t possibly craft their analysis to be most favorable to them.
Unfortunately, many studies depart from their protocols and perform different
analysis, allowing for researcher bias to creep in.26 Many other scientific fields
have no protocol publication requirement at all.

The proliferation of statistical techniques has given us many useful tools, but it
seems they have been put to use as blunt objects. One must simply beat the data
until it confesses.

24Ioannidis, J. P. A. (2008). Why Most Discovered True Associations Are Inflated. Epidemiology,
19(5), 640–648. doi:10.1097/EDE.0b013e31818131e7

25Simmons, J. P., Nelson, L. D., & Simonsohn, U. (2011). False-Positive Psychology: Undisclosed
Flexibility in Data Collection and Analysis Allows Presenting Anything as Significant. Psychological
Science, 22(11), 1359–1366. doi:10.1177/0956797611417632

26Chan, A.-W., Hróbjartsson, A., Jørgensen, K. J., Gøtzsche, P. C., & Altman, D. G. (2008). Discrep-
ancies in sample size calculations and data analyses reported in randomised trials: comparison of
publications with protocols. British Medical Journal, 337, a2299. doi:10.1136/bmj.a2299
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Everybody makes mistakes

Until now, I have presumed that scientists are capable of making statistical
computations with perfect accuracy, and only err in their choice of appropriate
numbers to compute. Scientists may misuse the results of statistical tests or fail
to make relevant computations, but they can at least calculate a p value, right?

Perhaps not.

Surveys of statistically significant results reported in medical trials suggest
that many p values are wrong, and some statistically insignificant results are
actually significant when computed correctly.27 Other reviews find examples of
misclassified data, erroneous duplication of data, inclusion of the wrong dataset
entirely, and other mixups, all concealed by papers which did not describe their
analysis in enough detail for the errors to be easily noticed.28

Sunshine is the best disinfectant, and many scientists have called for experi-
mental data to be made available through the Internet. In some fields, this is
now commonplace: there exist gene sequencing databases, protein structure
databanks, astronomical observation databases, and earth observation collec-
tions containing the contributions of thousands of scientists. Many other fields,
however, can’t share their data due to impracticality (particle physics data can
include many terabytes of information), privacy issues (in medical trials), a lack
of funding or technological support, or just a desire to keep proprietary control
of the data and all the discoveries which result from it. And even if the data
were all available, would anyone analyze it all to spot errors?

Similarly, scientists in some fields have pushed towards making their statistical
analyses available through clever technological tools. A tool called Sweave, for
instance, makes it easy to embed statistical analyses performed using the popular
R programming language inside papers written in LaTeX, the standard for
scientific and mathematical publications. The result looks just like any scientific
paper, but another scientist reading the paper and curious about its methods
can download the source code, which shows exactly how all the numbers were
calculated. But would scientists avail themselves of the opportunity? Nobody
gets scientific glory by checking code for typos.

Another solution might be replication. If scientists carefully recreate the experi-
ments of other scientists and validate their results, it is much easier to rule out
the possibility of a typo causing an errant result. Replication also weeds out
fluke false positives. Many scientists claim that experimental replication is the

27Gøtzsche, P. C. (2006). Believability of relative risks and odds ratios in abstracts: cross sectional
study. British Medical Journal, 333(7561), 231–234. doi:10.1136/bmj.38895.410451.79

28Baggerly, K. A., & Coombes, K. R. (2009). Deriving chemosensitivity from cell lines: Forensic
bioinformatics and reproducible research in high-throughput biology. The Annals of Applied
Statistics, 3(4), 1309–1334. doi:10.1214/09-AOAS291
Gøtzsche, P. C. (1989). Methodology and overt and hidden bias in reports of 196 double-blind

trials of nonsteroidal antiinflammatory drugs in rheumatoid arthritis. Controlled clinical trials, 10,
31–56.

24

http://dx.doi.org/10.1136/bmj.38895.410451.79
http://dx.doi.org/10.1214/09-AOAS291


heart of science: no new idea is accepted until it has been independently tested
and retested around the world and found to hold water.

That’s not entirely true; scientists often take previous studies for granted, though
occasionally scientists decide to systematically re-test earlier works. One new
project, for example, aims to reproduce papers in major psychology journals
to determine just how many papers hold up over time – and what attributes of
a paper predict how likely it is to stand up to retesting.29 In another example,
cancer researchers at Amgen retested 53 landmark preclinical studies in cancer
research. (By “preclinical” I mean the studies did not involve human patients,
as they were testing new and unproven ideas.) Despite working in collaboration
with the authors of the original papers, the Amgen researchers could only
reproduce six of the studies.30

This is worrisome. Does the trend hold true for less speculative kinds of medical
research? Apparently so: of the top-cited research articles in medicine, a quarter
have gone untested after their publication, and a third have been found to be
exaggerated or wrong by later research.31 That’s not as extreme as the Amgen
result, but it makes you wonder what important errors still lurk unnoticed in
important research. Replication is not as prevalent as we would like it to be, and
the results are not always favorable.

Conclusion

Beware false confidence. You may soon develop a smug sense of satisfaction
that your work doesn’t screw up like everyone else’s. But I have not given you
a thorough introduction to the mathematics of data analysis. There are many
ways to foul up statistics beyond these simple conceptual errors.

Errors will occur often, because somehow, few undergraduate science degrees
or medical schools require courses in statistics and experimental design – and
some introductory statistics courses skip over issues of statistical power and
multiple inference. This is seen as acceptable despite the paramount role of data
and statistical analysis in the pursuit of modern science; we wouldn’t accept
doctors who have no experience with prescription medication, so why do we
accept scientists with no training in statistics? Scientists need formal statistical
training and advice. To quote:

“To consult the statistician after an experiment is finished is often
merely to ask him to conduct a post mortem examination. He can

29The Reproducibility Project, at http://openscienceframework.org/reproducibility/
30Begley, C. G., & Ellis, L. M. (2012). Drug development: Raise standards for preclinical cancer

research. Nature, 483(7), 531–533. doi:10.1038/483531a
31Ioannidis, J. P. A. (2005). Contradicted and initially stronger effects in highly cited clinical

research. JAMA, 294(2), 218–228. doi:10.1001/jama.294.2.218
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perhaps say what the experiment died of.” – R. A. Fisher, popularizer
of the p value

Journals may choose to reject research with poor-quality statistical analyses, and
new guidelines and protocols may eliminate some problems, but until we have
scientists adequately trained in the principles of statistics, experimental design
and data analysis will not be improved. The all-consuming quest for statistical
significance will only continue.

Change will not be easy. Rigorous statistical standards don’t come free: if sci-
entists start routinely performing statistical power computations, for example,
they’ll soon discover they need vastly larger sample sizes to reach solid con-
clusions. Clinical trials are not free, and more expensive research means fewer
published trials. You might object that scientific progress will be slowed need-
lessly – but isn’t it worse to build our progress on a foundation of unsound
results?

To any science students: invest in a statistics course or two while you have the
chance. To researchers: invest in training, a good book, and statistical advice.
And please, the next time you hear someone say “The result was significant with
p < 0.05, so there’s only a 1 in 20 chance it’s a fluke!”, please beat them over the
head with a statistics textbook for me.

Disclaimer: The advice in this guide cannot substitute for the advice of a trained
statistical professional. If you think you’re suffering from any serious statistical
error, please consult a statistician immediately. I shall not have any liability from
any injury to your dignity, statistical error or misconception suffered as a result
of your use of this website.

Use of this guide to justify rejecting the results of a scientific study without
reviewing the evidence in any detail whatsoever is grounds for being slapped
upside the head with a very large statistics textbook. This guide should help
you find statistical errors, not allow you to selectively ignore science you don’t
like.

Contact

I’ve tried my best, but inevitably this guide will contain errors and omissions. If
you spot an error, have a question, or know a common fallacy I’ve missed, email
me at stats@refsmmat.com.
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